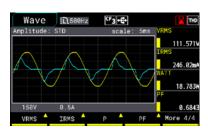


Supports Three Major Graphical Analysis Functions (Trend, Bar Chart, Waveform)

MICROTEST 7140 Power Analyzer not only provides numerical displays but also supports Waveform, Trend and Bar charts. Whether for real-time monitoring or long-term trend analysis, these graphical functions help engineers comprehensively analyze power-related parameters.


Trend Graph for Energy Evolution

As time progresses, energy changes often follow specific trends. The MICROTEST 7140's Trend function helps track long-term trends and shortterm fluctuations, providing valuable insights into energy evolution over time.

Harmonic Analysis with Bar Chart

MICROTEST 7140 supports 100th-order harmonic analysis and offers the option to display the results in a bar chart. This provides a more intuitive view of the relative strength or proportion of different harmonic components, helping to quickly identify the existing harmonic frequencies.

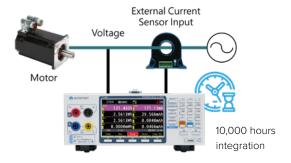
Waveform Graph for Real-Time Monitoring

The waveform graph function allows for a more intuitive observation of realtime fluctuations in power signals. By analyzing the curves of voltage and current variations, users can quickly detect any anomalies or periodic changes.

±0.05% Ultra High Accuracy, Unveiling Power's Secrets

Auto Integration up to 10,000 Hours

with 100th Harmonic Analysis



Power Integration Mode

In Power Integration Mode, the MICROTEST 7140/ 7130 accurately measures current integration (Ah) and energy (Wh) over a time range of up to 10,000 hours. It allows for long-term monitoring of equipment's energy consumption and current demand, making it ideal for durability testing of motors/rotating machinery. The instrument also supports data storage via the standard USB Host communication.

With its independent measurement modules, the instrument can simultaneously perform harmonic analysis and integration in any screen background, enabling real-time evaluation of harmonic effects in the system.

ITGR ID OFF ID F3-E				
4	VRMS	-	IRMS	
	WP		Ih	
	WP+		Ih+	
	WP-		Ih-	
■ 150V	1A		acan : a 🔼 000	0:06:42 >
•	VRMS	IRMS		•

Power Analyzer/ Power Meter

7140 7130

Test Frequency 0.2Hz~100kHz 100th-order Harmonic Analysis

MICROTEST 7140 Power Analyzer is specifically designed for single-phase AC/DC power measurement and analysis. It offers a wide test bandwidth ranging from DC, 0.2Hz to 100kHz and features a high-speed 500kSPS sampling rate. With a basic power measurement accuracy of ±0.05%, the compact unit is equipped with a 4.3" TFT LCD display, providing both numerical and graphical representations for precise powerrelated parameter measurements.

MICROTEST 7140 supports a rated direct input voltage of 800V and an input current of 30A, along with 100th-harmonic analysis capability. Its independent measurement modules allow multiple tests to be executed simultaneously in any screen background. This enables harmonic analysis and integration measurement to be performed simultaneously, ensuring real-time power quality monitoring and comprehensive measurement data acquisition. This significantly enhances testing efficiency, making power analysis more precise and reliable.

For standby power consumption measurement, it supports a minimum 5mA current range and a power resolution of 10µW. The rich graphical display interface includes waveform diagrams, bar charts, and trend graphs. In Meter mode, it can display 4/8/16 sets of parameters simultaneously while monitoring the maximum and minimum values of 4 or 8 parameter sets. Additionally, the comparison mode allows for PASS/FAIL judgments based on predefined upper and lower limits, meeting the measurement requirements of production lines, R&D, and quality control applications.

Extensive Parameter Measurement

- Voltage (VRMS/ VDC/ V+PK/ V-PK) Average Current (AVI)
- Current (IRMS/ IDC/ I+PK/ I-PK)
- Frequency (VHZ/ IHZ)
- Power (P)
- Crest Factor (CFV/ CFI)
- Power Factor (PF)
- Active Power Integration (Wh)
- Maximum Current Ratio (MCR)
- Current Integration (Ah)
- Apparent Power (S)
- Reactive Power (Q)
- Phase Angle (DEG)
- Displacement Power Factor (DPF)
- Average Active Power (AVP)
- Total Harmonic Distortion (THDV/ THDI/ THDW)

Application

Household Appliances I Refrigerators, washing machines, air conditioners, microwaves, etc.

Consumer Electronics | Laptops, tablets, servers, mobile

Industrial Equipment | Machinery, power tools, compressors,

Power Equipment | Generators, transformers, inverters, etc. New Energy Equipment | Solar power systems

Features

- Ultra-High Measurement Accuracy ±0.05%
- · High-Speed 500kSPS Sampling Rate
- · Rated Direct Input Voltage: 800V / Input Current: 30A
- DC, 0.2Hz~100kHz Voltage/Current Measurement Bandwidth
- 100th-Order Harmonic Analysis (Numerical Display / Bar Graph Analysis)
- 4.3" Color Multifunctional Digital & Graphical LCD Display
- · Three Graphical Display Modes (Waveform / Trend / Bar Graph)
- Automatic Integration up to 10,000 Hours with Simultaneous Harmonic Analysis

- Minimum Current Range of 5mA & Power Resolution of 10μW
- Supports Comparison Mode with Upper/Lower Limit PASS/FAIL
- · Automatic Switching Between Low and High Current Measurement Modes (Eliminates Manual Wiring)
- Simultaneous AC+DC Measurement and Display
- Supports External Current Sensor Input (High-Current Testing Solution)

Standard Interfaces

SIGNAL I/O

USB Device

RS-232

USB Host

Selection Chart

Power Measurement Solutions	7140 Power Analyzer	7130 Power Meter	
Frequency Range	DC, 0.2Hz~100kHz	DC, 0.2Hz~100kHz	
Basic Measurement Accuracy	±0.05%	±0.05%	
Sampling Rate	500kSPS	500kSPS	
Meter Mode	•	•	
Harmonic Analysis	100th-order harmonic	50th-order harmonic	
Voltage and Current Waveform Display	•	•	
Power Trend Graph	•	-	
Harmonic Bar Chart	•	-	

Specification

Input					
	Voltage	Crest factor 3: 15V/ 30V/ 60V/ 150V/ 300V/ 600V Crest factor 6: 7.5V/ 15V/ 30V/ 75V/ 150V/ 300V			
Measurement range	Current: Direct input	Crest factor 3: 5mA/10mA/20mA/50mA/100mA/200mA/0.5A/1A/2A/5A/10A/20A(Max30A) Crest factor 6: 2.5mA/5mA/10mA/25mA/50mA/100mA/0.25A/0.5A/1A/2.5A/5A/10A			
	Current: External current sensor input	Crest factor 3: 500mV/ 1V/ 2V/ 5V/ 10V			
	Voltage	Input resistance:Approx. 1.66MΩ Input capacitance:Approx. 13pF (Parallel with the resistance)			
Input impedance	Current: Direct input	Crest factor 3: 5mA/10mA/20mA/50mA/100mA/200mA Crest factor 6: 2.5mA/5mA/10mA/25mA/50mA/100mA	Input resistance:Approx. $500m\Omega+10m\Omega(wire)$ Input inductance:Approx. $0.1\mu H$		
input impedance		Crest factor 3: 0.5A/1A/2A/5A/10A/20A Crest factor 6: 0.25A/0.5A/1A/2.5A/5A/10A	Input resistance: Approx. $5m\Omega + 3m\Omega$ (wire) Input inductance: Approx. 0.1μ H		
	Current: External current sensor input	Crest factor 3: 0.5V/1V/2V/5V/10V	Input resistance: Approx. 10kΩ		
	BNC	Max AC 10V			
Continuous	Voltage	Peak value 1131V			
maximum allowable input	Comment	Crest factor 3: 5mA/10mA/20mA/50mA/100mA/200mA Crest factor 6: 2.5mA/5mA/10mA/25mA/50mA/100mA	Maximum current: 0.9A		
·	Current	Crest factor 3: 0.5A/1A/2A/5A/10A/20A Crest factor 6: 0.25A/0.5A/1A/2.5A/5A/10A	Maximum current: 30A		
Line filter	Select OFF or ON(cutoff frequency at 500Hz/5kHz/100kHz), THD ON(cutoff frequency at 500Hz/5kHz) Select OFF or ON(cutoff frequency at 500Hz)				
Frequency filter					
A/D converter	Simultaneous conversion of voltage and current inputs Resolution: 16bits, Maximum conversion rate: 500kSPS				

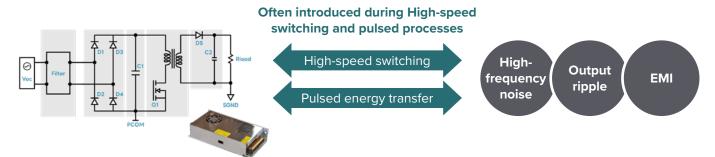
Voltage and Current	nd Current Accuracy		
	Accuracy	DC	DC Accuracy ±0.05% reading ± 0.05% of range
		0.2Hz ≦ f < 45Hz	±(0.1% of reading + 0.1% of range)
		$45Hz \le f \le 66Hz$	±(0.05% of reading + 0.05% of range)
		66Hz < f≦ 1kHz	(0.1% of reading + 0.1 % of range)
		$1kHz < f \le 10kHz$	$\pm([\{0.07\times(f)\}\% \text{ of reading}] + 0.3\% \text{ of range })$
		$10kHz < f \le 100kHz$	±(0.4 % of reading + 0.4 % of range)±[{0.04×(f-10)}% of reading]
	Frequency range	Data update interval	Measurement Frequency Range
Voltage and Current		0.05s	40Hz ~ 100kHz
Accuracy		0.1s	20Hz ~ 100kHz
		0.2s	10Hz ~ 100kHz
		0.25s	8Hz ~ 100kHz
		0.5s	5Hz ~ 100kHz
		1s	2Hz ~ 100kHz
		2s	1.5Hz ~ 100kHz
		5s	0.5Hz ~ 100kHz
		10s~60mins	0.2Hz ~ 100kHz
Active Power Accur	асу		

Same as the conditions for voltage and current. Power factor: 1

±(0.05% reading ± 0.05% of range)

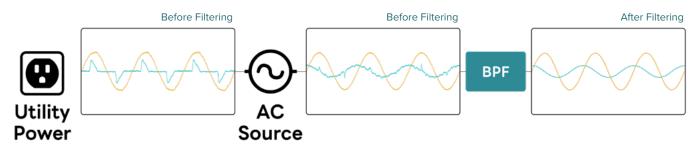
Requirements

Accuracy


Active Power Accuracy

		0.1Hz <u>≤</u> f< 45H	$\pm (0.2\% \text{ of reading} + 0.2\% \text{ of range})$			
A :: - B	$45Hz \le f \le 66Hz$		±(0.05% of reading + 0.05% of range)			
Active Power Accuracy	Accuracy	66Hz <f 1khz<="" td="" ≤=""><td>±(0.1% of reading + 0.1 % of range)</td></f>	±(0.1% of reading + 0.1 % of range)			
, ,		1kHz <f≦10kh< td=""><td>$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range}) \pm [\{0.06 \times (f)\}\% \text{ of reading}]$</td></f≦10kh<>	$\pm (0.1\% \text{ of reading} + 0.2\% \text{ of range}) \pm [\{0.06 \times (f)\}\% \text{ of reading}]$			
10kHz < f≦ 100k		10kHz < f≦ 100	±(0.4 % of reading + 0.4 % of range)±[{0.07×(f–10)}% of reading]			
Voltage, Current, ar	nd Active Power	Measurements				
	Measurement		ligital sampling method			
	Crest factor		3 or 6			
	Wiring system		Single-phase, two-wire (1P2W)			
Voltage, Current,	Range select		Select manual or auto ranging			
and Active Power	Display mode sv	witching	RMS, VOLTAGE MEAN, DC			
Measurements	Measurement synchronization	source	Select voltage, current, or the entire period of the data update interval for the signal used to achieve synchronization during measurement			
	Line filter		Select OFF or ON (cutoff frequency at 500Hz, 5kHz, 100kHz)			
	Peak measurem	nent	Measures the peak (max, min) value of voltage, current, or power from the instantaneous voltage, instantaneous current, or instantaneous power that is sampled			
Integration						
Mode	Manual integrati	on mode				
Timer	Automatically sto Selectable range	op integration by e: 0h00m00s ~ 9	y setting a timer 9999h59m59s (0h00m00s, automatically sets to manual integration mode)			
Count overflow	WP: 999999MW	/h/-99999MWh,	q: 999999MAh/-99999MAh			
Accuracy	*In auto-range m	node, measurem	curacy) + 0.05% of reading) (fixed range) nent is not performed during range switching. The first measurement after switching and e included in calculations			
Range setting			egration is available. and Power Measurement" section for range switching.			
Valid Frequency Ranges for Integration	Active power: DC to 100 kHz Current: DC to 100 kHz					
Timer accuracy	±0.02%					
Harmonic						
Measured item	1~100 {Voltage, Current, Power, Voltage Ratio, Current Ratio, Power Ratio, Voltage Phase Angle, Current Phase Angle}, and all measurement items when THD is not enabled					
Method	PLL synchroniza	ation method wit	h Discrete Fourier Transform for harmonic analysis			
Frequency range	Fundamental fre	equency of the P	LL source is in the range of 20Hz ~ 480Hz			
PLL source	Select voltage o	r current of each	n input element			
DFT data length	4096					
	20Hz ≤ f < 45Hz		±(0.2% of reading + 0.2% of range)			
			(0.2% of reading + 0.2% of range)			
A cource:	45Hz ≤ f ≤ 66Hz		(0.2% of reading + 0.2% of range) (0.05% of reading + 0.05% of range)			
Accuracy	45Hz ≤ f ≤ 66Hz 66Hz < f ≤ 1kHz	±				
Accuracy		±((0.05% of reading + 0.05% of range)			
Accuracy	66Hz < f ≤ 1kHz	±(±(z	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range)			
External Current Se	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kHz 10kHz < f ≤ 48kH	±(±(z	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading]			
	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kH; 10kHz < f ≤ 48kHensor Input	±1 ±1 z ±1 Hz ±1	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f–10)}% of reading]			
External Current Se	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kH; 10kHz < f ≤ 48kHensor Input	±1 ±1 z ±1 Hz ±1	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f–10)}% of reading]			
External Current Se	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kH; 10kHz < f ≤ 48kHensor Input	±t z ±t Hz ±t .5V/ 1V/ 2V/ 5V/	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f–10)}% of reading]			
External Current Se Measurement range General	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kHz 10kHz < f ≤ 48kHz nsor Input Crest factor 3: 0	±t z ±t Hz ±t .5V/ 1V/ 2V/ 5V/	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f–10)}% of reading]			
External Current Se Measurement range General Supply voltage	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kHz 10kHz < f ≤ 48kHensor Input Crest factor 3: 0	±t z Hz ±t 1.5V/ 1V/ 2V/ 5V/ 3.5V/ 50~60 Hz	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f–10)}% of reading]			
External Current Se Measurement range General Supply voltage Power consumption	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kHz 10kHz < f ≤ 48kHensor Input Crest factor 3: 0 100VAC~240VA 30VA MAX	±t z ±t Hz ±t 1.5V/ 1V/ 2V/ 5V/ C, 50~60 Hz	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f-10)}% of reading]			
External Current Se Measurement range General Supply voltage Power consumption Display Remote Control	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kHz 10kHz < f ≤ 48kHz 10kHz < f ≤ 48	±t z ±t Hz ±t .5V/ 1V/ 2V/ 5V/ .C, 50~60 Hz THERNET 10/1	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f-10)}% of reading]			
External Current Set Measurement range General Supply voltage Power consumption Display Remote Control Input/Output Signal	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kH: 10kHz < f ≤ 48kHensor Input Crest factor 3: 0 100VAC~240VA 30VA MAX 4.3"TFT, 800*48 USB, RS-232, E	±td z x td z td z td x td x td x td x td x td x td x td x td x td x td x	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f-10)}% of reading]			
External Current Se Measurement range General Supply voltage Power consumption Display Remote Control Input/Output Signal Memory Operating	66Hz < f ≤ 1kHz 1kHz < f ≤ 10kHz 10kHz < f ≤ 48kHz 10kHz < f ≤ 48	±td z x td z td z td x td x td x td x td x td x td x td x td x td x td x	(0.05% of reading + 0.05% of range) (0.1% of reading + 0.1 % of range) (0.1% of reading + 0.2% of range)± [{0.06×(f)}% of reading] (0.4 % of reading + 0.4 % of range)±[{0.07×(f-10)}% of reading]			

Functions


Industry-First | 100 kHz Power Analyzer with High-Pass/Band-Pass Filter Support

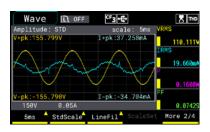
In the design and testing of SMPS, engineers often face interference from ripple and High-frequency switching noise. Choosing a Power Analyzer that supports High-Pass or Band-Pass Filter allows specific frequency Bands to be suppressed or preserved. This enables engineers to focus on the target signal and helps measure more accurate power and power quality.

Because all components of the mains input (fundamental frequency, high-frequency noise, and external interference) are captured together, engineers find it difficult to distinguish harmonics caused by the actual load from those from external interference, affecting the assessment of power supply design quality and regulatory compliance. In addition, while the AC source provides stable AC voltage resulting in smooth voltage waveforms with low noise, the current is still influenced by load transients and high-frequency interference from internal switching components, causing the current waveform to exhibit jitter or high-frequency disturbances.

Band-Pass Filter for Targeted Frequency Bands

Enabling the Band-Pass Filter effectively suppresses High-frequency spikes and noise jitter within a specific frequency Band, making voltage and current waveforms smoother and clearer. This allows engineers to focus on performance evaluation and design verification in the target frequency range.

Mains - Before Filtering

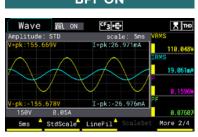


Directly Connected to Mains

When connected to mains, the fundamental frequency, High-frequency noise, and external interference are all captured.

The voltage lacks smoothness at peaks and troughs, showing small irregular fluctuations, while the current waveform is overlaid with noise, exhibiting pronounced sawtooth-like iitter.

AC Source - Before Filtering



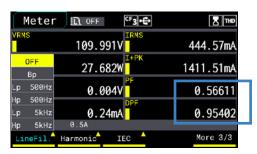
With AC Source Connected

The voltage waveform is noticeably smoother, presenting an ideal sine shape with reduced fluctuations and improved smoothness.

However, the current is still affected by load transients, interference from internal switching components, and feedback control response, so jitter remains.

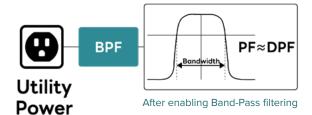
BPF ON

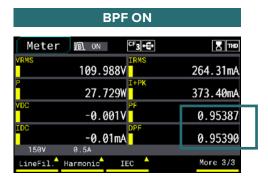
With Band-Pass Filter Enabled


The voltage waveform becomes even smoother, with High-frequency noise and spikes suppressed, approaching an ideal sine wave.

Current jitter is significantly reduced, and waveform regularity improves.

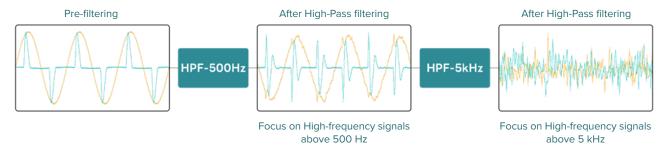
Enable Band-Pass Filter: PF≈ DPF


When the power supply is directly connected to mains without a stable AC source, High-frequency harmonics from nonlinear loads increase the RMS current, raising apparent power (VA) and lowering the true power factor (PF). Since DPF is unaffected by harmonics and reflects only the fundamental phase difference, a significant difference between PF and DPF values is observed


Mains - Before Filtering

Before Band-Pass filtering, influenced by mains

The input current of the Power Supply is directly affected by mains influence. PF calculation considers the entire RMS current and apparent power, including not only the fundamental current but also higher-order harmonics, noise, and external interference generated by the power supply's rectification and switching circuits. These non-fundamental components reduce the PF value.

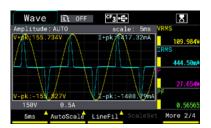


With Band-Pass Filter Enabled

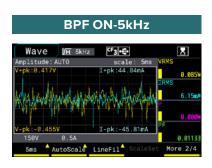
With the High-Pass Filter enabled, higher-order harmonics and non-fundamental components in the input current are effectively suppressed. PF is no longer affected by harmonics and noise, and thus approaches DPF.

High-Pass Filter for High-Frequency Signals

Switched-mode power supplies (SMPS) generate high-frequency pulses and harmonics from tens to hundreds of kHz. Standard Power Analyzers suppress or distort these signals, making PF and current waveform measurements inaccurate for high-frequency interference.




With the High-Pass Filter enabled


During power supply measurement with an AC source, setting frequency bands at 500 Hz, 5 kHz, and 100 kHz allows analysis of current jitter in different High-frequency ranges.

This helps engineers clearly identify High-frequency harmonics and noise at the power supply input and determine which frequency bands have the greatest impact on power quality and equipment stability.

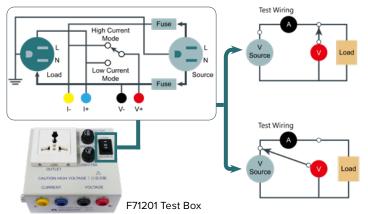
AC Source - Before Filtering

Compliant with IEC 62301 Ed.2 Requirements for Power Analyzers Equipped with Low-Current Measurement Mode for Accurate Standby Power

MICROTEST 7140 Power Analyzer

Meets the functional requirements for power analyzers specified in IEC 62301 Ed.2

IEC 62301 Ed.2 Requirements for Power Analyzers		MICROTEST 7140	
Equipped with Energy Integration Function	V	Compliant	
Energy Resolution ≤ 1mWh	V	Energy Resolution 100μWh	
Elapsed Time Resolution ≤1s	V	Compliant	
Power Resolution ≤ 1mW	V	Compliant	
Crest Factor ≥ 3	V	Supports CF3 and CF6	
Minimum Current Range ≤ 10mA	V	Minimum Current Range (50μΑ~11mA)	
Supports Automatic Overrange Warning Function	V	Compliant	
Capable of Disabling Auto-Range Function	V	Compliant	
Active Power Includes Both AC and DC Components	V	Compliant	
Harmonic Bandwidth ≥ 2.5 kHz	V	Compliant, and supports 100th-order Harmonic Analysis	



MICROTEST 7140 Power Analyzer complies with IEC 62301 Ed.2 requirements for testing instruments. It supports up to 10,000 hours of integration, enabling watt-hour average power estimation. When paired with the F71201 AC mains test fixture, it eliminates manual U-I/I-U wiring operations. By switching to the "Low Current" measurement mode, it can subtract the meter's power to ensure the measured power approaches 0 W, providing highly accurate measurements that closely reflect true standby power.

Support Switching Between High and Low Current Measurement Modes -**Eliminating Manual Wiring**

Most power measurement instruments cannot automatically adjust wiring to compensate for the internal resistance of current and voltage meters, which affects power consumption measurements. Engineers typically need to use the correct wiring method (U-1 / I-U wiring) to ensure precise standby power measurement.

The MICROTEST 7140/7130 supports manual switching between high and low current measurement modes (when used with the F71201 test fixture and for currents below 15A), eliminating the need for manual rewiring and improving measurement efficiency.

High-Current Mode

When measuring high-current products, the F71201 test fixture allows switching to high-current mode. The voltage measurement point is directly connected to the DUT (Device Under Test) to prevent voltage drop in the wiring loop, ensuring accurate power measurement without underestimation caused by high-current load conditions.

Low-Current Mode

When measuring low standby power products, switching to small current mode bypasses the 7140/7130 voltage input internal resistance of 1.66M Ω , ensuring that the measured power approaches OW. This feature is particularly useful for standby power evaluation, providing high accuracy in ultra-low power measurements.

Example: Measuring Standby Power Consumption of a Charger in No-Load Condition

When testing the standby power consumption of a charger, the power generated is very small due to the extremely low current value. To ensure accurate measurement of the charger's low standby power consumption, it is essential to use the correct wiring method and appropriate current range. This ensures precision in detecting such a minimal power draw.

High-Current Mode

Low-Current Mode

By manually switching to Low-Current Measurement Mode through the F71201 test fixture, the power consumed by the $1.66M\Omega$ voltage input internal resistance is automatically deducted; the system also automatically switches range to the low current range for testing. Accurately measuring the standby power consumption of the charger as 0.0429W, which is much closer to the actual value.

Front-Facing Voltage/Current Input Terminals for Easy Connection

The voltage/current measurement input terminals adopt a front-facing design, enabling quick and convenient connection with the F71201 fixture box. The F71201 connection cables can be directly connected to the 7140 Power Analyzer, allowing DUTs (such as AC plugs) to be plugged into the fixture box for plug-and-play functionality, eliminating the hassle of manual wiring.

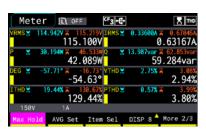


In Meter Mode, up to 4/8/16 sets of parameters can be displayed at once.

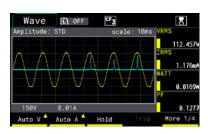
MICROTEST 7140/ 7130 features a 4.3"TFT LCD display with 5-digit measurement readout. In Meter mode, it can simultaneously show 4/8/16 sets of parameters. It offers ultra-high precision for voltage, current, and power measurements, achieving an accuracy of $\pm 0.05\%$ of the reading $\pm 0.05\%$ of the range.

4-Parameter Display

8-Parameter Display

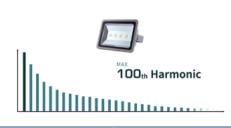

16-Parameter Display

Simultaneous Monitoring of Maximum and Minimum Values for 4/8 Parameters, with Built-in Oscilloscope Function


MICROTEST 7140/ 7130 is capable of simultaneously monitoring 4 or 8 parameters, displaying their maximum and minimum values. This helps engineers efficiently track fluctuations and variations in power-related parameters. Additionally, it supports graphical display and features a simple oscilloscope function to observe voltage and current waveforms. With its USB Host storage interface, users can directly capture waveform screenshots and record values without the need for an external oscilloscope.

Simultaneous Display of 4 Parameters

Simultaneous Display of 8 Parameters

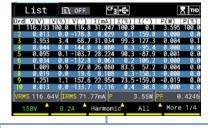


Waveform Display of Voltage and Current

Up to 100th-Order Harmonic Analysis with Odd and Even Harmonics Display

MICROTEST 7140 Power Analyzer meets the harmonic measurement requirements of IEC61000-4-7 standards, supporting harmonic analysis up to 100th orders. The measurement results can be displayed as either numerical values or bar charts, allowing for precise analysis of key harmonic parameters such as voltage, current, power, voltage distortion percentage, power distortion percentage, voltage phase angle, and current phase

The instrument uses independent measurement modules, allowing engineers to simultaneously perform harmonic analysis and integration, enabling real-time monitoring and analysis.



Model	7140	7130
Harmonic Analysis	100th Harmonic	50th Harmonic
Tiaimonic Analysis	(100th Harmonic Order)	(50th Harmonic Order)

In harmonic analysis mode, engineers can choose to display "odd-order harmonics" or "even-order harmonics." Focusing on odd-order harmonics helps quickly identify issues such as nonlinear loads or voltage distortion, allowing for precise pinpointing of factors affecting power quality. Filtering evenorder harmonics is effective for diagnosing potential risks such as load imbalance or equipment aging, simplifying data analysis and enabling engineers to quickly get to the root of the issue.

Numeric Mode

Displaying Odd-Order Harmonic Analysis

Harmonics at Odd Multiples of the Rated Frequency (Fundamental Frequency)

Evaluating the Impact of Non-Linear Loads on the System

Even Harmonic Analysis Display

Harmonics with Even Multiples of the Rated Frequency (Even-Order Harmonics)

Identifying Potential Asymmetry or Specific Equipment Issues

Graphical Mode

Viewing Voltage, Current, and Power Harmonics Analysis Using a Bar Graph

Effective Analysis of AC Power Parameters with DC Characteristics in Voltage/Current

Due to grid fluctuations, the waveform of AC power may not always be a perfect sine wave. When measuring AC parameters, the MICROTEST 7140/7130 can simultaneously display the DC component within the AC voltage and current data. This provides a more comprehensive view of power quality, assisting engineers in optimizing and analyzing power supply designs.

Circuit and Frequency Filtering Function

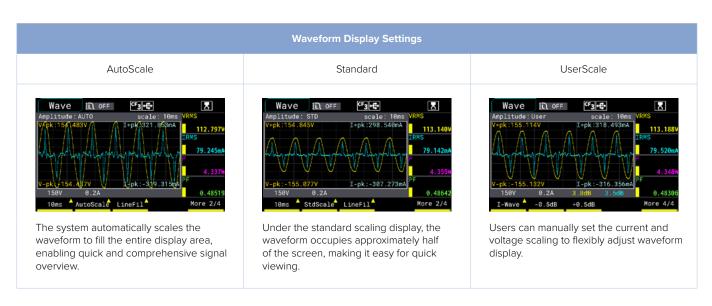
With the MICROTEST 7140/7130 supporting filtering functions, unwanted frequencies in the signal can be filtered out during measurement, leaving only the signals within the target frequency range. This results in cleaner waveforms and more precise measurements of important power-related parameters in power systems.

Before Filtering

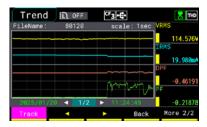
After Filtering (500Hz)

Automatic PASS/FAIL Judgment

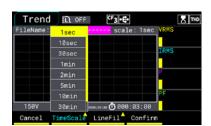
MICROTEST 7140/ 7130 supports Comparison Mode, allowing users to set upper and lower limit values. This feature is ideal for production line testing, where it can automatically perform PASS/FAIL judgment for multiple parameters, such as voltage, current, and power, based on the defined limit values.


PASS-Displayed in green

FAIL-Displayed in red


Supports Custom Display Scaling (UserScale)

Engineer can configure custom display ratios for current and voltage, enabling an oscilloscope-like interface for intuitive and flexible waveform observation.



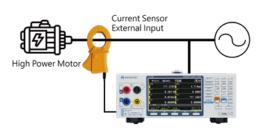
Moving the Timeline for More Flexible Trend Analysis, Quickly Focusing on **Specific Moments or Sections**

MICROTEST 7140 Power Analyzer supports trend chart analysis, allowing for a more intuitive view of how power parameters change over time through the timeline. This feature enables engineers to quickly and accurately pinpoint data variations at specific moments.

- · Transient Division
- Trend Prediction and Diagnosis
- Efficiency and Performance Verification
- Comparative Analysis
- · Data Logging and Reporting

Configurable Time Range

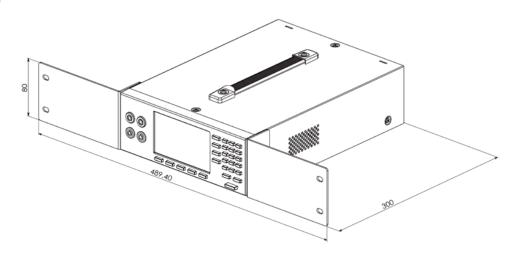
Sec	Min
1/ 10/ 30	1/ 2/ 5/ 10/ 30/ 60



Configurable Output Parameters (Up to 4 Sets at a Time)

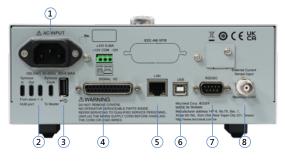
Output Parameters	
VRMS/ IRMS/ VDC/ IDC/ PF/ DPF/ P/ S	

Current Sensor Input


MICROTEST 7140/ 7130 provides a maximum input of 800V and 30A. For current measurement needs exceeding 30A, voltage input-type current clamps or current sensors can be purchased for testing.

High Current Meas	surement Solution
Clamp-on Transformer	Current Sensor
AC 100A/ 1V	AC 500A/ 4V
Bandwidth 5kHz	Bandwidth 50kHz

Automatic Chassis Dimension


• Dimension (mm)

Appearance

- 1. Voltage/ Current Input Terminal
- 2. LCD screen
- 3. Function keys
- 4. Menu Keys
- 5. Numeric Keys
- 6. Power Switch

- 1. Power jack
- 2. TYPE-C Sync
- 3. USB Host
- 4. SIGNAL I/O
- 5. LAN
- 6. USB Device
- 7. RS232
- 8. External Current

Ordering Information

7140/7130	Standard	Optional
7140 Power Analyzer (100th-order harmonic)	TL-PM0001 Test Cable-Red (100cm)	• F71201 Test Box (AC 250V/ 15A)
• 7130 Power Meter (50th-order harmonic)	TL-PM0002 Test Cable-Black (100cm)	TL-000006 Ethernet Cable (150cm)
	TL-PM0003 Test Cable-Blue (100cm)	TL-000007 USB Cable (180cm Type-A TO Type-B)
	TL-PM0004 Test Cable-Yellow (100cm)	AX-PM0001 Test Probe-Red
	Power Cord	AX-PM0002 Test Probe-Black
		AX-PM0003 Alligator Clips-Yellow
		AX-PM0004 Alligator Clips-Blue
		• TL-000014 D-Sub Cable-25M TO 25M (180cm)
		Grove Hall Sensor (AC 500A/ 4V)
		Current Transformer (AC 100A/ 1V)

Fixture & Accessories

F71201 Test Box

TL-00006 Ethernet Cable

TL-000007 USB Cable

7140/ 7130 Type-A TO Type-B I 180cm

Applicable models	7140/ 7130	7140/ 7130
Accessory Description	AC 250V/ 15A	150cm

TL-PM0001 Test Cable

TL-PM0002 Test Cable

TL-PM0003 Test Cable

st Cable

Applicable models	7140/ 7130	7140/ 7130	7140/ 7130
Accessory Description	Red I 100cm	Black I 100cm	Blue I 100cm

TL-PM0004 Test Cable

AX-PM0001 Test Probe

AX-PM0002

Test Probe

Applicable models	7140/ 7130	7140/ 7130	7140/ 7130
Accessory Description	Yellow I 100cm	Red	Black

TL-000014 D-Sub Cable

AX-PM0003 Alligator Clips

AX-PM0004 Alligator Clips

Applicable models	7140/ 7130	7140/ 7130	7140/ 7130
Accessory Description	180cm I 25M TO 25M	Yellow	Blue

Grove Hall Sensor

C	
Ţ	

		<u> </u>
Applicable models	7140/ 7130	7140/ 7130
Accessory Description	AC 500A/ 4V	AC 100A/ 1V